Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.22.509040

ABSTRACT

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs). It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants. Here, we show that boosting with the original SARS-CoV-2 spike vaccine (mRNA-1273) or a B.1.351/B.1.617.2 (Beta/Delta) bivalent vaccine (mRNA-1273.213) induces robust spike-specific GC B cell responses in humans. The GC response persisted for at least eight weeks, leading to significantly more mutated antigen-specific MBC and bone marrow plasma cell compartments. Interrogation of MBC-derived spike-binding monoclonal antibodies (mAbs) isolated from individuals boosted with either mRNA-1273, mRNA-1273.213, or a monovalent Omicron BA.1-based vaccine (mRNA-1273.529) revealed a striking imprinting effect by the primary vaccination series, with all mAbs (n=769) recognizing the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted approach, we isolated mAbs that recognized the spike protein of the SARS-CoV-2 Omicron (BA.1) but not the original SARS-CoV-2 spike from the mRNA-1273.529 boosted individuals. The latter mAbs were less mutated and recognized novel epitopes within the spike protein, suggesting a naive B cell origin. Thus, SARS-CoV-2 boosting in humans induce robust GC B cell responses, and immunization with an antigenically distant spike can overcome the antigenic imprinting by the primary vaccination series.


Subject(s)
Breast Neoplasms , Lymphoma, B-Cell
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.31.466651

ABSTRACT

Germinal centres (GC) are lymphoid structures where vaccine-responding B cells acquire affinity-enhancing somatic hypermutations (SHM), with surviving clones differentiating into memory B cells (MBCs) and long-lived bone marrow plasma cells (BMPCs). Induction of the latter is a hallmark of durable immunity after vaccination. SARS-CoV-2 mRNA vaccination induces a robust GC response in humans, but the maturation dynamics of GC B cells and propagation of their progeny throughout the B cell diaspora have not been elucidated. Here we show that anti-SARS-CoV-2 spike (S)-binding GC B cells were detectable in draining lymph nodes for at least six months in 10 out of 15 individuals who had received two doses of BNT162b2, a SARS-CoV-2 mRNA vaccine. Six months after vaccination, circulating S-binding MBCs were detected in all participants (n=42) and S-specific IgG-secreting BMPCs were detected in 9 out of 11 participants. Using a combined approach of single-cell RNA sequencing of responding blood and lymph node B cells from eight participants and expression of the corresponding monoclonal antibodies, we tracked the evolution of 1540 S-specific B cell clones. SHM accumulated along the B cell differentiation trajectory, with early blood plasmablasts showing the lowest frequencies, followed by MBCs and lymph node plasma cells whose SHM largely overlapped with GC B cells. By three months after vaccination, the frequency of SHM within GC B cells had doubled. Strikingly, S+ BMPCs detected six months after vaccination accumulated the highest level of SHM, corresponding with significantly enhanced anti-S polyclonal antibody avidity in blood at that time point. This study documents the induction of affinity-matured BMPCs after two doses of SARS-CoV-2 mRNA vaccination in humans, providing a foundation for the sustained high efficacy observed with these vaccines.


Subject(s)
Lymphoma, B-Cell
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.28.21264250

ABSTRACT

Although vaccines effectively prevent COVID-19 in healthy individuals, they appear less immunogenic in individuals with chronic inflammatory diseases (CID) and/or under chronic immunosuppression, and there is uncertainty of their activity against emerging variants of concern in this population. Here, we assessed a cohort of 74 CID patients treated as monotherapy with chronic immunosuppressive drugs for functional antibody responses in serum against historical and variant SARS-CoV-2 viruses after immunization with Pfizer mRNA BNT162b2 vaccine. Longitudinal analysis showed the greatest reductions in neutralizing antibodies and Fc effector function capacity in individuals treated with TNF- inhibitors, and this pattern appeared worse against the B.1.617.2 Delta virus. Within five months of vaccination, serum neutralizing titers of the majority of CID patients fell below the presumed threshold correlate for antibody-mediated protection. Thus, further vaccine boosting or administration of long-acting prophylaxis (e.g., monoclonal antibodies) likely will be required to prevent SARS-CoV-2 infection in this susceptible population.


Subject(s)
COVID-19 , Chronic Disease
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.08.459485

ABSTRACT

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we show that frequency of TFH correlates with that of S-binding germinal center B cells. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLADPB1* 04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.24.436864

ABSTRACT

The emergence of antigenically distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility is a public health threat. Some of these variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies, which principally target the receptor binding domain (RBD) on the virus spike glycoprotein. Here, we describe 2C08, a SARS-CoV-2 mRNA vaccine-induced germinal center B cell-derived human monoclonal antibody that binds to the receptor binding motif within the RBD. 2C08 broadly neutralizes SARS-CoV-2 variants with remarkable potency and reduces lung inflammation, viral load, and morbidity in hamsters challenged with either an ancestral SARS-CoV-2 strain or a recent variant of concern. Clonal analysis identified 2C08-like public clonotypes among B cell clones responding to SARS-CoV-2 infection or vaccination in at least 20 out of 78 individuals. Thus, 2C08-like antibodies can be readily induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Subject(s)
Coronavirus Infections , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.07.21253098

ABSTRACT

In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast derived mAbs from subjects who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, that the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to seasonal human coronaviruses OC43 and HKU1 spike proteins. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine induced RBD binding antibodies may provide substantial protection against viral variants carrying E484K.


Subject(s)
Neural Tube Defects , Severe Acute Respiratory Syndrome
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.28.20115667

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by a high incidence of acute respiratory failure. The underlying immunopathology of that failure and how it compares to other causes of severe respiratory distress, such as influenza virus infection, are not fully understood. Here we addressed this by developing a prospective observational cohort of COVID-19 and influenza subjects with varying degrees of disease severity and assessing the quality and magnitude of their immune responses at the cellular and protein level. Additionally, we performed single-cell RNA transcriptional profiling of peripheral blood mononuclear cells from select subjects. The cohort consists of 79 COVID-19 subjects, 26 influenza subjects, and 15 control subjects, including 35 COVID-19 and 7 influenza subjects with acute respiratory failure. While COVID-19 subjects exhibited largely equivalent or greater activated lymphocyte counts compared to influenza subjects, they had fewer monocytes and lower surface HLA-class II expression on monocytes compared to influenza subjects and controls. At least two distinct immune profiles were observed by cytokine levels in severe COVID-19 patients: 3 of 71 patients were characterized by extreme inflammation, with greater than or equal to ~50% of the 35 cytokines measured greater than 2 standard deviations from the mean level of other severe patients (both influenza and COVID-19); the other immune profile, which characterized 68 of 71 subjects, had a mixed inflammatory signature, where 28 of 35 cytokines in COVID-19 patients had lower mean cytokine levels, though not all were statistically significant. Only 2 cytokines were higher in COVID-19 subjects compared to influenza subjects (IL-6 and IL-8). Influenza and COVID-19 patients could be distinguished statistically based on cytokine module expression, particularly after controlling for the significant effects of age on cytokine expression, but again with lower levels of most cytokines in COVID-19 subjects. Further, high circulating levels of IL-1RA and IL-6 were associated with increased odds of intubation in the combined influenza and COVID-19 cohort [OR = 3.93 and 4.30, respectively] as well as among only COVID-19 patients. Single cell transcriptional profiling of COVID-19 and influenza subjects with respiratory failure identified profound suppression in type I and type II interferon signaling in COVID-19 patients across multiple clusters. In contrast, COVID-19 cell clusters were enriched for alterations in metabolic, stress, and apoptotic pathways. These alterations were consistent with an increased glucocorticoid response in COVID-19 patients compared to influenza. When considered across the spectrum of innate and adaptive immune profiles, the immune pathologies underlying severe influenza and COVID-19 are substantially distinct. The majority of COVID-19 patients with acute respiratory failure do not have a cytokine storm phenotype but instead exhibit profound type I and type II IFN immunosuppression when compared to patients with acute influenza. Upregulation of a small number of inflammatory mediators, including IL-6, predicts acute respiratory failure in both COVID-19 and influenza patients.


Subject(s)
COVID-19 , Influenza, Human , Inflammation , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL